爱你小说
会员书架
爱你小说 >都市娱乐 >时间简史 > 第12章 基本粒子和自然的力(2)

第12章 基本粒子和自然的力(2)

上一章 章节目录 加入书签 下一章

色禁闭使得人们察看不到一个伶仃的夸克或胶子,这究竟使得将夸克和胶子当作粒子的全部观点看起来有点玄学的味道。但是,强核力另有一种叫做渐近自在的性子,它使得夸克和胶子成为意义明白的观点。在普通能量下,强核力确切很强,它将夸克紧紧地捆在一起。但是,大型粒子加快器的尝试指出,强感化力在高能量下变得弱很多,夸克和胶子的行动就几近像自在粒子那样。

同一电磁力和弱核力的胜利,令人们多次试图将这两种力和强核力归并在所谓的大同一实际(或GUT)当中。

因为夸克有色彩(红、绿或蓝),人们不能获得伶仃的夸克本身。相反,一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克连接在一起(红+绿+蓝=白)。如许的三胞胎构成了一个质子或中子。其他的能够性是由一个夸克和一个反夸克构成的对(红+反红,或绿+反绿,或蓝+反蓝=白)。如许的连络体构成了称为介子的粒子。介子是不稳定的,因为夸克和反夸克会相互泯没,而产生电子和其他粒子。近似地,因为胶子也有色彩,色禁闭使得人们不成能获得伶仃的胶子本身。相反,人们所能获得的胶子的团,其叠加起来的色彩必须是白的。如许的团构成了称为胶球的不稳定粒子。

如果因为某种启事,我们只能在低能下察看球,我们就会觉得存在37种分歧范例的球!

这名字相称夸大:获得的实际并不那么光辉,也没能将全数力都同一出来,因为它并不包含引力。它们也不是真正完整的实际,因为它们包含了很多不能从这实际中预言而必须报酬挑选去合适尝试的参数。固然如此,它们能够是朝着完整的同一实际推动的一步。GUT的根基思惟是如许:正如前面提到的,在高能量下强核力变弱了;另一方面,不是渐近自在的电磁力和弱力在高能量下变强了。在某个非常高的叫做大同一能量的能量下,这3种力都具有一样的强度,并是以可当作一个伶仃的力的分歧方面。在这能量下,GUT还预言了自旋为1/2的分歧物质粒子(如夸克和电子)也会底子上都变成一样,如许导致了另一种同一。

初期宇宙必定是不从命T对称的:跟着时候进步,宇宙收缩――如果它今后发展,则宇宙收缩。并且,因为存在着不从命T对称的力,是以当宇宙收缩时,相对于将电子变成反夸克,这些力将更多的反电子变成夸克。然后,跟着宇宙收缩并冷却下来,反夸克就和夸克泯没,但因为已有的夸克比反夸克多,少量多余的夸克就留下来。恰是它们构成我们明天看到的物质,由这些物质构成了我们本身。

如许,我们本身之存在能够为是大同一实际的证明,哪怕仅仅是定性的罢了;但此预言的不肯定性到了这类程度,乃至于我们不能晓得在泯没以后余下的夸克数量,乃至不知是夸克还是反夸克余下。(但是,如果是反夸克多余留下,我们能够简朴地把反夸克称为夸克,夸克称为反夸克。)大同一实际不包含引力。在我们措置根基粒子或原子题目时这干系不大,因为引力是如此之弱,凡是能够忽视它的效应。但是,它的感化既是长程的,又老是吸引的究竟,表白它的统统效应是叠加的。以是,对于充足大量的物质粒子,引力会比其他统统的力都更首要。这就是为甚么恰是引力决定了宇宙的演变的原因。乃至对于恒星大小的物体,引力的吸引会超越统统其他的力,并使恒星坍缩。我在70年代的事情集合于研讨黑洞。黑洞就是由这类恒星的坍缩和环绕它们的强大的引力场产生的。恰是黑洞研讨给出了量子力学和广义相对论如何相互影响的第一个表示――亦即尚未胜利的量子引力论形状的一瞥。

此中最风趣的预言是,构成凡是物质的大部分质量的质子能够自发衰变成诸如反电子之类更轻的粒子。之以是能够,其启事在于,在大同一能量下,夸克和反电子之间没有本质的分歧。在普通环境下一个质子中的三个夸克没有充足能量窜改成反电子,因为不肯定性道理意味着质子中夸克的能量不成能严格稳定,此中一个夸克会非常偶尔地获得充足能量停止这类窜改。如许质子就要衰变。夸克要获得充足能量的概率是如此之低,起码要等候100万亿亿亿年(1前面跟30个O)才气有1次。这比宇宙从大爆炸以来的春秋(约莫100亿年――1前面跟10个0)要长很多了。是以,人们会以为不成能在尝试上检测到质子自发衰变的能够性。但是,人们能够察看包含极大数量质子的大量物质,以增加检测衰变的机遇。(比方,如果察看的工具含有1前面跟31个0个质子,遵循最简朴的GUT,能够预感在1年内应能看到多于一次的质子衰变)。

但是,1964年,还是两个美国人――J・W・克罗宁和瓦尔・费兹――发明,在某种称为K介子的衰变中,乃至连CP对称也不从命。1980年,克罗宁和费兹终究因为他们的研讨而获得诺贝尔奖。(很多奖是因为显现宇宙不像我们曾经想像的那么简朴而授予的!)有一个数学定理说,任何从命量子力学和相对论的实际必须从命CPT结合对称。换言之,如果同时用反粒子来置换粒子,取镜像另偶然候反演,则宇宙的行动必须是一样的。但是,克罗宁和费兹指出,如果仅仅用反粒子来代替粒子,并且采取镜像,但不反演时候方向,则宇宙的行动不不异。以是,如果人们反演时候方向,物理学定律必须窜改――它们不从命T对称。

为甚么夸克比反夸克多这么多?为何它们的数量不相称?这数量有所分歧必定使我们交了好运,不然,初期宇宙中它们必将已经相互泯没了,只余下一个充满辐射而几近没有物质的宇宙。是以,厥后也就不会有人类生命赖以生长的星系、恒星和行星。光荣的是,大同一实际能够解释,固然乃至刚开端时二者数量相称,为何现在宇宙中夸克比反夸克多。正如我们已经看到的,大同一实际答应夸克变成高能下的反电子。它们也答应相反的过程,反夸克变成电子,电子和反电子变成反夸克和夸克。在极初期宇宙有一期间是如此之热,粒子能量高到足以产生这些窜改。但是,它为何使夸克比反夸克多呢?启事在于,物理定律对于粒子和反粒子不是完整不异的。

大同一能量的数值还晓得得不太清楚,能够起码有1000万亿吉电子伏特。现在朝粒子加快器只能使大抵能量为100吉电子伏的粒子相碰撞,而打算制作的机器的能量可升到几千吉电子伏。要制作足以将粒子加快到大同一能量的机器,其体积必须和太阳系一样大――这在当代经济环境下不太能够做到。是以,不成能在尝试室里直接查验大同一实际。但是,如同在弱电同一实际中那样,我们能够查验它在低能量下的推论。

我们没有直接的证据,表白其他星系中的物质是由质子、中子还是由反质子、反中子构成,但二者必居其一,在单一的宇宙中不能有异化,不然,我们又会察看到大量由泯没产生的辐射。是以,我们信赖,统统的星系是由夸克而不是反夸克构成;看来,一些星系为物质,而另一些星系为反物质也是难以置信的。

固然观察质子的自发衰变非常困难,但很能够正因为这相反的过程,即质子,或更简朴地说,夸克的产生导致了我们的存在。它们是从宇宙开初的能够想像的最天然的体例――一夸克并不比反夸克更多的状况下产生的。地球上的物质主如果由质子和中子,进而由夸克构成。除了少数由物理学家在大型粒子加快器中产生的以外,不存在由反夸克构成的反质子和反中子。我们从宇宙线中获得的证据表白,我们星系中的统统物质也是如许:除了少数当粒子和反粒子对停止高能碰撞时产生的以外,没有发明反质子和反中子。如果在我们星系中有很大地区的反物质,则能够预感,在正反物质的鸿沟会观察到大量的辐射。很多粒子在那边和它们的反粒子相碰撞、相互泯没并开释出高能辐射。

但是,电磁力在原子和分子的小标准下起首要感化。在带负电的电子和带正电的核中的质子之间的电磁力使得电子环绕着原子的核公转,正如同引力使得地球环绕着太阳公转一样。人们将电磁吸引力描画成是因为互换大量称作光子的无质量的自旋为1的虚粒子引发的。反复一下,这里互换的光子是虚粒子。但是,电子从一个答应轨道窜改到另一个离核更近的答应轨道时,开释能量并且发射出实光子――如果其波长恰当,则作为可见光可被肉眼察看到,或可用诸如拍照底版的光子探测器察看到。一样,如果一个光子和原子相碰撞,可将电子从离核较近的答应轨道挪动到较远的轨道。如许光子的能量被耗损掉,它也就被接收了。

人们停止了一系列尝试,可惜没有获得任何质子或中子衰变的确切证据。有一个尝试是在俄亥俄的莫尔顿盐矿里停止的(为了制止其他因宇宙射线引发的会和质子衰变相混合的事件产生),用了8000吨水。因为在尝试中没有观察到自发的质子衰变,是以能够预算出,能够的质子寿命起码应为1000万亿亿亿(1前面跟31个0)年。这比简朴的大同一实际所预言的寿命更长。但是,一些更精美的大同一实际预言的寿命比这更长,是以需求用更活络的手腕对乃至更大量的物质停止查验。

直到1956年人们都信赖,物理定律别离从命三个叫做C、P和T的对称。C(电荷)对称的意义是,定律对于粒子和反粒子是不异的;P(宇称)对称的意义是,定律对于任何景象和它的镜像(右手方向自旋的粒子的镜像变成了左手方向自旋的粒子)是不异的;T(时候)对称的意义是,如果你倒置统统粒子和反粒子的活动方向,体系应回到起初的那样;换言之,定律对于进步或后退的时候方向是一样的。1956年,两位美国物理学家李政道和杨振宁提出弱感化实际上不从命P对称。换言之,弱力使得宇宙和宇宙的镜像以分歧的体例生长。同一年,他们的一名同事吴健雄证了然他们的预言是精确的。她把放射性原子的核摆列在磁场中,使它们的自旋方向分歧。尝试表白,在一个方向比另一方向发射出得更多电子。次年,李和杨为此获得诺贝尔奖。人们还发明弱感化不从命C对称,便是说,它使得由反粒子构成的宇宙以和我们的宇宙分歧的体例行动。固然如此,弱力仿佛确切从命CP结合对称。也就是说,如果每个粒子都用其反粒子来代替,则由此构成的宇宙的镜像和本来的宇宙以一样的体例生长!

在温伯格・萨拉姆实际中,当能量远远超越100吉电子伏时,这3种新粒子和光子都以类似的体例行动。但是,大部分普通环境下粒子能量要比这低,粒子之间的对称被粉碎了。W+、W-和Z。获得了大的质量,使之照顾的力变成非常短程。萨拉姆和温伯格提出此实际时,很少人信赖他们,因为加快器还未强大到将粒子加快到产生实的W+、W-和Z粒子所需的100吉电子伏的能量。但在而后的十几年里,在较低能量下这个实际的其他预言和尝试合适得如许好,使他们和也在哈佛的谢尔登・格拉肖一起获得1979年的诺贝尔物理学奖。格拉肖提出过一个近似的同一电磁和弱感化的实际。因为1983年在CERN(欧洲核子研讨中间)发明了具有被精确预言的质量和其他性子的光子的3个有质量的朋友,使得诺贝尔委员会制止了犯弊端的尴尬。带领几百名物理学家作出此发明的卡罗・鲁比亚和开辟了被利用的反物质储藏体系的CERN工程师西蒙・范德・米尔分享了1984年的诺贝尔奖。(除非你已经是顶峰人物,当今要在尝试物理学上留下陈迹极其困难!)第四种力是强核力。它将质子和中子中的夸克束缚在一起,并将原子核中的质子和中子束缚在一起。人们信赖,称为胶子的另一种自旋为1的粒子照顾强感化力。它只能与本身以及与夸克相互感化。强核力具有一种称为禁闭的古怪性子:它老是把粒子束缚成不带色彩的连络体。

第三种力称为弱核力。它卖力放射性征象,并只感化于自旋为1/2的统统物质粒子,而对诸如光子、引力子等自旋为0、1或2的粒子不起感化。直到1967年伦敦帝国粹院的阿伯达斯・萨拉姆和哈佛的史蒂芬・温伯格提出了弱感化和电磁感化的同一实际后,弱感化才被很好地了解。此举在物理学界所引发的震惊,可与约莫100年前麦克斯韦同一电学和磁学相提并论。他们提出,除了光子,还存在其他3个自旋为1的被统称作重矢量玻色子的粒子,它们照顾弱力。它们称作W+(W正)、W-(W负)和Z(Z零),每一个都具有约莫100吉电子伏的质量(1吉电子伏为10亿电子伏)。温伯格-萨拉姆实际揭示了称作对称自发破缺的性子。这意味着,在低能量下一些看起来完整分歧的粒子,究竟上发明都只是同一种粒子处于分歧的状况。统统这些粒子在高能量下都有类似的行动。这个效应和轮赌盘上的轮赌球的行动附近似。在高能量下(当这轮子转得很快时),这球的行动根基上只要一个别例――即不竭地转动着。但是跟着轮子变慢下来,球的能量减小,终究球就陷到轮子上的37个槽中的一个里去。换言之,在低能下球能够存在于37种分歧的状况。

上一章 章节目录 加入书签 下一章